Product Information Elements in Customization and Personalization

When working with Product Information Management (PIM) you can divide the different kinds of information to be managed into some levels and groups as elaborated in the post 5 Product Data Levels to Consider.

The 10 groups of product information in this 5-level scheme are all relevant for customization and personalization of product information in the following way:

  1. A (prospective) customer may have some preferred brands which are recognized either by collection of preferences or identified through previous behaviour.
  2. The shopping context may dictate that some product codes like GTIN/UPC/EAN and industry specific product codes are relevant as part of the product presentation or if these codes will only be noise.
  3. The shopping context may guide the use of variant product descriptions as touched in the post What’s in a Product Name?
  4. The shopping context may guide the use of various product image styles.
  5. The shopping context may guide the range of product features (attributes) to be presented typically either on a primary product presentation screen and on a detailed specification screen.
  6. The shopping context and occasion may decide the additional product description assets (as certificates, line drawings, installation guides and more) to be presented.
  7. The shopping occasion may decide the product story to be told.
  8. The shopping occasion may decide the supplementary products as accessories and spare parts to be presented along with the product in focus.
  9. The shopping occasion may decide the complementary products as x-sell and up-sell candidates to be presented along with the product in focus.
  10. The shopping occasion may decide the advanced digital assets as brochures and videos to be presented.   

Personalization of product information is a component of a Product eXperience Management (PxM) solution. You can learn more about this discipline in the post What is PxM?

What is MDM? – and the Adjacent Disciplines?

This site is list of solutions for MDM and the disciplines adjacent to MDM. As always, it is good to have a definition of what we are talking about. So, here are some definitions of MDM and an Introduction to 9 adjacent disciplines:

Def MDM

MDM: Master Data Management can be defined as a comprehensive method of enabling an enterprise to link all of its critical data to a common point of reference. When properly done, MDM improves data quality, while streamlining data sharing across personnel and departments. In addition, MDM can facilitate computing in multiple system architectures, platforms and applications. You can find the source of this definition and 3 other – somewhat similar – definitions in the post 4 MDM Definitions: Which One is the Best?

The most addressed master data domains are parties encompassing customer, supplier and employee roles, things as products and assets as well as location.

Def PIM

PIM: Product Information Management is a discipline that overlaps MDM. In PIM you focus on product master data and a long tail of specific product information – often called attributes – that is needed for a given classification of products.

Furthermore, PIM deals with how products are related as for example accessories, replacements and spare parts as well as the cross-sell and up-sell opportunities there are between products.

PIM also handles how products have digital assets attached.

This data is used in omni-channel scenarios to ensure that the products you sell are presented with consistent, complete and accurate data. Learn more in the post Five Product Information Management Core Aspects.

Def DAM

DAM: Digital Asset Management is about handling extended features of digital assets often related to master data and especially product information. The digital assets can be photos of people and places, product images, line drawings, certificates, brochures, videos and much more.

Within DAM you are able to apply tags to digital assets, you can convert between the various file formats and you can keep track of the different format variants – like sizes – of a digital asset.

You can learn more about how these first 3 mentioned TLAs are connected in the post How MDM, PIM and DAM Stick Together.

Def DQM

DQM: Data Quality Management is dealing with assessing and improving the quality of data in order to make your business more competitive. It is about making data fit for the intended (multiple) purpose(s) of use which most often is best to achieved by real-world alignment. It is about people, processes and technology. When it comes to technology there are different implementations as told in the post DQM Tools In and Around MDM Tools.

The most used technologies in data quality management are data profiling, that measures what the data stored looks like, and data matching, that links data records that do not have the same values, but describes the same real world entity.

Def RDM

RDM: Reference Data Management encompass those typically smaller lists of data records that are referenced by master data and transaction data. These lists do not change often. They tend to be externally defined but can also be internally defined within each organization.

Examples of reference data are hierarchies of location references as countries, states/provinces and postal codes, different industry code systems and how they map and the many product classification systems to choose from.

Learn more in the post What is Reference Data Management (RDM)?

Def CDI

CDI: Customer Data Integration is considered as the predecessor to MDM, as the first MDMish solutions focused on federating customer master data handled in multiple applications across the IT landscape within an enterprise.

The most addressed sources with customer master data are CRM applications and ERP applications, however most enterprises have several of other applications where customer master data are captured.

You may ask: What Happened to CDI?

Def CDP

CDP: Customer Data Platform is an emerging kind of solution that provides a centralized registry of all data related to parties regarded as (prospective) customers at an enterprise.

In that way CDP goes far beyond customer master data by encompassing traditional transaction data related to customers and the emerging big data sources too.

Right now, we see such solutions coming both from MDM solution vendors and CRM vendors as reported in the post CDP: Is that part of CRM or MDM?

Def ADM

ADM: Application Data Management is about not just master data, but all critical data that is somehow shared between personel and departments. In that sense MDM covers all master within an organization and ADM covers all (critical) data in a given application and the intersection is looking at master data in a given application.

ADM is an emerging term and we still do not have a well-defined market – if there ever will be one – as examined in the post Who are the ADM Solution Providers?

Def PXM

PXM: Product eXperience Management is another emerging term that describes a trend to positioning PIM solutions away from the MDM flavour and more towards digital experience / customer experience themes.

In PXM the focus is on personalization of product information, Search Engine Optimization and exploiting Artificial Intelligence (AI) in those quests.

Read more about it in the post What is PxM?

Def PDS

PDS: Product Data Syndication connects MDM, PIM (and other) solutions at each trading partner with each other within business ecosystems. Product data syndication is often the first wave of encompassing interenterprise data sharing. You can get the details in the post What is Product Data Syndication (PDS)?

Contextual MDM vs Enterprise-Wide, Global, Multidomain MDM

The term “contextual Master Data Management” has been floating around in a couple of years. We can see contextual MDM as smaller pieces of MDM with a given flavour as for example focussing on sub/overlapping disciplines as:

The focus can also be at:

  • A given locality
  • A given master data domain as customer, supplier, employee, other/all party, product (beyond PIM), location or asset
  • A given business unit

You must eat an elephant one bite at a time. Therefore, contextual MDM makes a good concept for getting achievable wins.   

However, in an organization with high level of data management maturity the range of contextual MDM use cases, and the solutions for them, will be encompassed by a common enterprise-wide, global, multidomain MDM framework – either as one solution or a well-orchestrated set of solutions.

One example with dependencies is when working with personalization as part of Product Experience Management (PXM). Here you need customer personas. The elephant in the room, so to speak, is that you have to get the actual personas from Customer MDM and/or the Customer Data Platform (CDP).

The list of solutions on this site covers both one-stop-shopping options for all contextual MDM use cases and specialised solutions for a given contextual MDM use case. Check the growing list here.

An MDM / PIM / DQM Easter Egg

It is high season for painting Easter eggs now.MDM PIM DQM Easter EggThis egg is featuring:

  • Master Data Management (MDM),
  • Product Information Management (PIM) and/or
  • Data Quality Management (DQM)

as well as:

  • Application Data Management (ADM),
  • Customer Data Integration (CDI),
  • Customer Data Platform (CDP),
  • Digital Asset Management (DAM),
  • Product Data Syndication (PDS),
  • Product experience Management (PXM) and
  • Reference Data Management (RDM)

Check out the 10 data management TLAs on this list here.

Digital Transformation Success Rely on MDM / PIM Success

It is hard to find an organization who do not want to be on the digital transformation wagon today. But how can you ensure that your digital transformation journey will be a success? One of the elements in making sure that this data driven process will be a success will be to have a solid foundation of Master Data Management (MDM) including Product Information Management (PIM).

The core concepts here are:

  • Providing a 360-degree view of master data entities: Engaging with your customers across a range of digital platforms is a core part of any digital transformation. Having a 360-degree view of your customer has never been more important, and that starts with well-organized and maintained customer master data. The same is true for supplier master data and other party master data. 360-degree view of locations is equally important. The same goes for products and assets as pondered in post Golden Records in Multidomain MDM.
  • Enabling happy self-service scenarios: Customer data are gathered from many sources and digital self-registration is becoming the most common used method. The self-service theme has also emerged in handling supplier master data as self-service based supplier portals have become common as the place where supplier/vendor master data is captured and maintained. Interacting with your trading partners on digital platforms and having the most complete product information in front of your customers in self-service online selling scenarios requires a solid foundation for product master data and Product experience Management (PxM).
  • Underpinning the best customer experience: Customer experience (CX) and MDM must go hand in hand. Both themes involve multiple business units and digital environments within your enterprise and in the wider business ecosystem, where your enterprise operates. Master data is the glue that brings the data you hold about your customers together as well as the glue that combines this with the data you share about your product offering.
  • Encompassing Internet of Things (IoT): Smart devices that produces big data can be used to gain much more insight about parties (in customer and other roles), products, locations and the things themselves. You can only do that effectively by relating IoT and MDM.

Digital Transformation Success