Cloud multi-domain MDM as the foundation for Digital Transformation

Upen-200x300

Upen Varanasi

This guest blog post is an interview by Katie Fabiszak with CEO & Founder Upen Varanasi on the new MDM release from Riversand Technologies.

Riversand is pleased to announce the newest release of our cloud-native suite of Master Data Management solutions. Helping organizations create a data and analytics foundation to drive successful digital transformation was the driving factor behind Riversand’s decision to completely rethink and rebuild a master data platform that would meet the future needs of the digital era. According to Riversand CEO & Founder Upen Varanasi, “We knew we had to make an aggressive move to envision a new kind of data platform that was capable of handling the forces shaping our industry.” Katie Fabiszak, Riversand Global Vice President of Marketing, sat down with Upen to talk about Riversand’s vision of the future and how the bold decisions he had made several years ago led to the company’s own transformational journey and a new MDM solution:

KF:        Where do you think the market is heading?

UV:       Well, we are truly in the digital era. The markets are rewarding companies that are leaders in this digital landscape. This is forcing all companies to truly embrace digital transformation. A key aspect of this transformation is the role of data. Data is the new “fuel” of digital transformation. What matters is how enterprises can leverage data and unlock its power to create better and faster business outcomes. Turning data into insights is a key factor. Another important aspect is to understand the complexities of the information supply chain. Simplifying the flow of data is critical to drive better and faster business outcomes. Let’s take an example from the retail/CPG space: Enterprises want to better understand their customers (utilizing customer insights through AI), create/sell products and services that meet and exceed customer expectations (product positioning through AI), meet their customers across all touch points (channel management), secure their customer’s information (privacy), and interact with trading partners to creating cutting edge product differentiation (cloud and AI).

KF:        Why did Riversand decide to shift gears and embark on what became a 2+ year transformational journey for the company?

UV:       At Riversand, we understood the need to envision a new kind of platform to handle the trends occurring in our industry. We focused on creating a data-driven multi-domain Master Data Management System that has the following properties:

  • A contextual master data modeling environment.
  • A platform that can handle scale, velocity and variety of data, built to handle master data as well as transaction and interaction data.
  • Embedded AI to drive better insights and outcomes.
  • Built on cloud, with the ability to integrate data and processes across hybrid clouds.
  • A highly business-friendly user experience.
  • Apps built on the platform that can solve the “final mile” problem for business users. PIM and customer domain solutions are each apps built on this same platform.

Our goal was to create a platform and solutions that can be quick to implement, provide insights and recommended actions to business users, and automates many of the more mundane data management and stewardship functions. We believe we can provide Enterprises with the critical capabilities from the Master Data Management and Product Information Management space to differentiate themselves in the marketplace.

KF:        What are the core values of Riversand?

UV:       Our core values are innovation, commitment & integrity. We have consistently strived to bring leading edge innovation to the market. We have dared to step back at times in order to take a bigger leap forward. What helps is that we have had a long-term view of our company and the industry we play in. We have been in business for 18 years and have been committed to this space and to our customers all along the way. Integrity in everything we do is key in dealing with our stakeholders – employees, customers and partners – and has been our focus since inception. We might not get things right all the time to begin with, but we will always make it right with our stakeholders over time.

KF:        What do you see as Riversand’s biggest strength?

UV:       Our people, our passion for this space and our long-term thinking give us an incredible edge against our competition. We are blessed to have a team who have shaped this company over many years and who are invested deeply in the company and this market space.

Riversand picKF:        What would you say sets Riversand apart?  How is our technology and approach different than the other MDM and PIM vendors in the market?

UV:       The path we have chosen provides clear benefits for our customers with respect to our competition. Some key points of differentiation are:

  • We provide a single platform to help implement MDM and PIM initiatives. No need to create further silos of data and processes.
  • We future-proof both business users and IT users with a platform that is flexible and future enabled.
  • We are built for the cloud and SaaS eras: Upgrades are easy and done by us, and customers can scale with pay as you go models.
  • Our AI engine is built on a big data stack to drive insights and actions for better business outcomes.
  • With our big data technology stack, enterprises have the ability to scale with data and handle both its variety and velocity.
  • A completely new and extremely business friendly user interface and experience that people love to use!
  • The app building toolkit (SDK) to help customers and partners build their own apps so that they can solve their final mile problems: This is in addition to the core apps we are actively building.

KF:        Where is Riversand today along this journey that we began over 2 years ago?

UV:       Our new solutions were introduced as a kind of soft launch with a select few customers over the past year. The feedback and insights we received during this year were extremely useful in becoming enterprise-ready. We are now in a position to launch our platform to the broader market. Over the next two quarters, we will be further enhancing our offerings including: the analytics/AI platform, app SDK for partners and customers, launching additional SaaS appsnd entering additional vertical markets. We also look forward to creating robust partner ecosystems for these vertical markets.

KF:        What’s next for Riversand – what do you envision for the future?

UV:       We are really excited about the potential of our new master data platform and we look forward to working with our current customers as well as new customers to help them with their digital transformation journey. We are disruptors in our space and we will continue to establish ourselves as a larger, bolder and leading global brand.

We hope you enjoyed the interview!  You can check out additional information by reading the press announcement here.

Katie Fabiszak oversees and directs global marketing efforts at Riversand.  She is an accomplished executive with more than 20 years of success in global marketing for high tech companies. She is responsible for leading the strategic evolution of the company’s branding and marketing strategy.  With proven success developing effective marketing strategies to drive revenue, Katie’s extensive career includes marketing leadership positions at Informatica, StrikeIron and DataFlux (a SAS company).

Master Data Management Definitions: The A-Z of MDM. Part 1

img_A-Z_post1

This guest blog post is written by Justine Aa. Rodian of Stibo Systems. The post is part 1 in a series of 3. Please stay tuned for part 2 and 3.

Master Data Management can seem complicated to understand and talk about. There are so many abbreviations, so much puzzling lingo. This blog post breaks down the most commonly used MDM terms and define them so that even your mum understands. Get your MDM definitions straight in this A-Z of Master Data Management.

A

Analytics. The discovery of meaningful patterns in data. For businesses, data analytics are used to gain insight and thereby optimize processes and business strategies. Master Data Management can support analytics by providing organized master data as the basis of the analysis or link trusted master data to new types of information output from analytics.

Application Data Management (ADM). The management and governance of the application data required to operate a specific business application. ADM performs a similar role to MDM, but on a much smaller scale as it only enables the management of data used by a single application.

Application Programming Interface (API). An integrated part of most software, such as applications and operating systems, that allows one piece of software to interact with other types of software. In Master Data Management, not all functions can necessarily be handled in the software platform itself. For instance, you want to be able to deliver or receive data to or from external systems and applications. By using APIs built into the software, you can do that and thereby expand the functionality of your MDM solution.

Assets. In the MDM lingo, an asset can be understood in slightly different ways. There’s the term “data as an asset,” where asset is defined as something that can be “owned” or “controlled” to produce value. Here we talk about a way of perceiving something as an asset. But, when you hear about asset management and enterprise assets in conjunction with MDM, an asset is a more tangible thing of which the management can be optimized. Assets can be physical (people, buildings, parts, computers) and digital (data, images).

Architecture. An MDM solution is not just something you buy, then start to use. It needs to be fitted into your specific enterprise setup and integrated with the overall enterprise architecture and infrastructure, which is why MDM architecture is required as one of the first steps in an MDM process.

Attributes. In MDM, an attribute is a specification or characteristic that helps define an entity. For instance, a product can have several attributes, such as color, material, size and components. MDM supports the management of product data, including related attribute data.

B

Business Intelligence (BI). Business Intelligence is a type of analytics. It entails strategies and technologies that help organizations understand their operations, customers, financials, product performance and a number of other key business measurements. MDM supports BI efforts by feeding the BI solution with trusted master data.

Big Data. Large or complex data sets that make traditional data processing tools inadequate. Big data is characterized by the three Vs: Volume (a lot of data), Velocity (data created with high speed) and Variety (data comes in many forms and ranges). The purpose of using Big Data technologies is to capture the data and turn it into actionable insights. The information gathered from Big Data analytics can be linked to your master data and thereby provide new levels of insights.

Bill Of Materials (BOM). A list of the parts or components that are required to build a product.

B2B, B2C, B2B2C. Whether you operate as a Business-to-Business company, Business-to-Consumer company or any combination, Master Data Management can be applicable if you deal with large amounts of master data about, for instance, products, customers, assets, locations or employees.

Business rules. Business rules are conditions or actions set up in your MDM solution that allow for the modification of your data. According to your business rules, you can determine how your data is organized, categorized, enriched and managed. Business rules are typically used in workflows.

C

Customer Data Integration (CDI). The process of combining customer information acquired from internal and external sources to generate a consolidated customer view. CDI is often considered a subset of MDM for customer data.

Customer Data Platform (CDP). A marketing system that unifies a company’s customer data from marketing and other channels to optimize the timing and targeting of messages and offers. An MDM platform supports a CDP by linking the CDP data to other master data, such as product and supplier data, maximizing the potential of the data.

Change Management. The preparation and support of individuals, teams and organizations in making organizational change. A necessity in any MDM implementation if you want to maximize the ROI, as it is very much about changing processes and mindsets.

Cleansing. As in data cleansing. The process of identifying, removing and/or correcting inaccurate data records (e.g., by deduplicating data). Data cleansing eliminates the problems of useless data to ensure quality and consistency throughout the enterprise, and is an integral process of any decent Master Data Management process.

Cloud. MDM solutions come in many variations, and a central question of today is whether to host it on-premises or in the cloud (or a mix, called a hybrid). Cloud MDM is slowly on the rise, and many vendors offer the possibility to host in the cloud, but still the majority of companies choose an on-premise solution due to security concerns. With a hosted cloud solution, typically run on Amazon’s Web Services, Microsoft’s Azure or Google Cloud, organizations don’t have to install, configure, maintain and host the hardware and software. It is outsourced to a third party and typically offered as a subscription service.

Communication. Is something you don’t want to forget in the implementation of an MDM solution. It’s important that the whole company is made aware of what MDM is, what value it brings, and what it means for everyone on a daily basis. That’s the only way people will commit to it.

Contextual. As in contextual Master Data Management. Sometimes known under the name situational MDM (ref. Gartner Hype Cycle). It refers to the management of changeable master data as opposed to traditional, more static, master data. As products and services get more complex and personalized, so does the data, making the management of it equally complex. The dynamic and contextual Master Data Management is forecast to be one of the next big hypes in the MDM world.

Learn more here.

Customer Relationship Management (CRM). A system that can help businesses manage business relationships and the data and information associated with them. For smaller businesses a CRM system can be enough to manage the complexity of customer data, but in most cases organizations have several CRM systems used to various degrees and with various purposes. For instance, the sales and marketing organization will often use one system, the financial department another, and perhaps procurement a third. MDM can provide the critical link between these systems. It does not replace CRM systems but supports and optimizes the use of them.

Customer Master Data Management. Also sometimes referred to as MDM of customer data. The aim is to get one single and accurate set of data on each of your business customers—the so-called 360-degree customer view—across systems, locations and more, in order to create the best possible customer experience and optimize processes.

Learn more here.

D

Digital Asset Management (DAM). The business management of digital assets, most often images, videos, digital files and their metadata. Many businesses have a standalone or home-grown DAM solution, inhibiting the efficiency of the data flow and thereby delaying processes, such as on-boarding new products into an e-commerce site. MDM lets you handle your digital assets more efficiently and connects it to other data. DAM can be a prebuilt function in some MDM solutions.

Data. Data is a computing term to describe the characters, symbols, numbers and media that a computer system is storing. Data is unprocessed information.

Deduplication. The process of eliminating redundant data in a data set, by identifying and removing extra copies of the same data, leaving only one high-quality data set to be stored. Data duplicates are a common business problem, causing wasted resources and leading to bad customer experiences. When implementing a Master Data Management solution, thorough deduplication is a crucial part of the process.

Domain. In the MDM world a domain is understood as one of several areas in which your business can benefit from data management, for example within the product data domain, customer data domain, supplier data domain, etc.

Digital Transformation. (or Digital Disruption). Refers to the changes associated with the use of digital technology in all aspects of human society. For businesses, a central aspect of Digital Transformation is the “always-online” consumer, forcing organizations to change their business strategy and thinking in order to deliver excellent customer experiences. Digital Transformation also has major impact on efficiency and workflows (e.g., the so-called Fourth Industrial Revolution driven by automation and data, also known as Industry 4.0). MDM can play a crucial role in driving digital transformations, as the backbone of these are data.

D-U-N-S. Data Universal Numbering System. A D-U-N-S number is a unique nine-digit identifier for each single business entity, provided by Dun & Bradstreet. The system is widely used as a standard business identifier. A decent MDM solution will be able to support the use of D-U-N-S by providing an integration between the two systems.

If you’d like the whole A-Z e-book in a downloadable format, please find it here.

Justine Aagaard Rodian is a marketing specialist at Stibo Systems with a background as a journalist. Five years in the data management industry has armed Justine with unique insights and she is now using her storytelling and digital skills to spread valuable business knowledge about Master Data Management and related topics.

8 Forms of Master Data Management

8 forms MDM

Master Data Management (MDM) can take many forms. In the following I will shortly introduce 8 forms of MDM. A given MDM implementation will typically be focused on one of these forms with some elements of the other forms and a given piece of technology will have an origin in one of these forms and in more or less degree encompass some more forms:

1.      The traditional MDM platform: A traditional MDM solution is a hub for master data aiming at delivering a single source of truth (or trust) for master data within a given organization either enterprise wide or within a portion of an enterprise. The first MDM solutions were aimed at Customer Data Integration (CDI), because having multiple and inconsistent data stores for customer data with varying data quality is a well-known pain point almost everywhere. Besides that, similar pain points exist around vendor data and other party roles, product data, assets, locations and other master data domains and dedicated solutions for that are available.

2.      Product Information Management (PIM): Special breed of solutions for Product Information Management aimed at having consistent product specifications across the enterprise to be published in multiple sales channels have been around for years and we have seen a continuously integration of the market for such solutions into the traditional MDM space as many of these solutions have morphed into being a kind of MDM solution.

3.      Digital Asset Management (DAM): Not at least in relation to PIM we have a distinct discipline around handling digital assets as text documents, audio files, video and other rich media data that are different from the structured and granular data we can manage in data models in common database technologies. A post on this blog examines How MDM, PIM and DAM Stick Together.

4.      Big Data Integration: The rise of big data is having a considerable influence on how MDM solutions will look like in the future. You may handle big data directly inside MDM og link to big data outside MDM as told in the post about The Intersection of MDM and Big Data.

5.      Application Data Management (ADM): Another area where you have to decide where master data stops and handling other data starts is when it comes to transactional data and other forms data handled in dedicated applications as ERP, CRM, PLM (Product Lifecycle Management) and plenty of other industry specific applications. This conundrum was touched in a recent post called MDM vs ADM.

6.      Multi-Domain MDM: Many MDM implementations focus on a single master data domain as customer, vendor or product or you see MDM programs that have a multi-domain vision, overall project management but quite separate tracks for each domain. We have though seen many technology vendors preparing for the multi-domain future.

7.      MDM in the cloud: MDM follows the source applications up into the cloud. New MDM solutions naturally come as a cloud solution. The traditional vendors introduce cloud alternatives to or based on their proven on-promise solutions. There is only one direction here: More and more cloud MDM – also as customer as business partner engagement will take place in the cloud.

8.      Ecosystem wide MDM: Doing MDM enterprise wide is hard enough. But it does not stop there. Increasingly every organization will be an integrated part of a business ecosystem where collaboration with business partners will be a part of digitalization and thus we will have a need for working on the same foundation (doing Multienterprise MDM as Gartner coins it) as reported in the post Ecosystem Wide MDM.

PS: If you are a vendor on the MDM, PIM or DAM market you can promote your solution here on the list and emphasize on the forms you support. Registration can be done here.