Digital Transformation Success Rely on MDM / PIM Success

It is hard to find an organization who do not want to be on the digital transformation wagon today. But how can you ensure that your digital transformation journey will be a success? One of the elements in making sure that this data driven process will be a success will be to have a solid foundation of Master Data Management (MDM) including Product Information Management (PIM).

The core concepts here are:

  • Providing a 360-degree view of master data entities: Engaging with your customers across a range of digital platforms is a core part of any digital transformation. Having a 360-degree view of your customer has never been more important, and that starts with well-organized and maintained customer master data. The same is true for supplier master data and other party master data. 360-degree view of locations is equally important. The same goes for products and assets as pondered in post Golden Records in Multidomain MDM.
  • Enabling happy self-service scenarios: Customer data are gathered from many sources and digital self-registration is becoming the most common used method. The self-service theme has also emerged in handling supplier master data as self-service based supplier portals have become common as the place where supplier/vendor master data is captured and maintained. Interacting with your trading partners on digital platforms and having the most complete product information in front of your customers in self-service online selling scenarios requires a solid foundation for product master data and Product experience Management (PxM).
  • Underpinning the best customer experience: Customer experience (CX) and MDM must go hand in hand. Both themes involve multiple business units and digital environments within your enterprise and in the wider business ecosystem, where your enterprise operates. Master data is the glue that brings the data you hold about your customers together as well as the glue that combines this with the data you share about your product offering.
  • Encompassing Internet of Things (IoT): Smart devices that produces big data can be used to gain much more insight about parties (in customer and other roles), products, locations and the things themselves. You can only do that effectively by relating IoT and MDM.

Digital Transformation Success

Multidomain MDM and the Next Big MDM Thing

Mutidomain MDM has been a trend in the Master Data Mamagement world for some years as told in the post Golden Records in Multidomain MDM.

Gartner, the analyst, firm, says in the latest MDM Magic Quadrant that “Several patterns have emerged whereby “customer,” “party,” “product” or “thing” master data have become the highest priority for a large number of organizations. The MDM solution should be capable of supporting all domains that are “in scope” for an MDM program, through either client-driven or prepackaged data model styles.”

Gartner has also together with the included vendors estimated the number of multidomain licenses sold on the market as seen in the post Counting MDM Licenses.

On the Hype Cycle for Information Management Gartner sees Multidomain MDM as sliding into the through of disillusionment while the customer and product single domains are at the slope of enlightenment.

Multidomain MDM Hype

Multiple domains are in the Gartner world one of several vectors of MDM. Other vectors are industries, usage scenarios (operational vs analytical), organizational structures (central vs local) and implementation styles (registry, consolidation, coexistence and centralized).

Another MDM theme that is trailing multidomain is multienterprise MDM – aka business ecosystem wide MDM.

Forrester, the other analyst firm, puts it this way in their latest MDM Wave: “As first-generation MDM technologies become outdated and less effective, improved second generation and third-generation features will dictate which providers lead the pack. Vendors that can provide internet-of-things (IoT) capabilities, ecosystem capabilities, and data context position themselves to successfully deliver added business value to their customers.”

What do you think: Will multidomain MDM prevail? Either way, what will be the next big thing(s)?

Golden Records in Multidomain MDM

The term golden record is a core concept within Master Data Management (MDM). A golden record is a representation of a real world entity that may be compiled from multiple different representations of that entity in a single or in multiple different databases within the enterprise system landscape.

GoldIn Multidomain MDM we work with a range of different entity types as party (with customer, supplier, employee and other roles), location, product and asset. The golden record concept applies to all of these entity types, but in slightly different ways.

Party Golden Records

Having a golden record that facilitates a single view of customer is probably the most known example of using the golden record concept. Managing customer records and dealing with duplicates of those is the most frequent data quality issue around.

If you are not able to prevent duplicate records from entering your MDM world, which is the best approach, then you have to apply data matching capabilities. When identifying a duplicate you must be able to intelligently merge any conflicting views into a golden record.

In lesser degree we see the same challenges in getting a single view of suppliers and, which is one of my favourite subjects, you ultimately will want to have a single view on any business partner, also where the same real world entity have both customer, supplier and other roles to your organization.

Location Golden Records

Having the same location only represented once in a golden record and applying any party, product and asset record, and ultimately golden record, to that record may be seen as quite academic. Nevertheless, striving for that concept will solve many data quality conundrums.

GoldLocation management have different meanings and importance for different industries. One example is that a brewery makes business with the legal entity (party) that owns a bar, café, restaurant. However, even though the owner of that place changes, which happens a lot, the brewery is still interested in being the brand served at that place. Also, the brewery wants to keep records of logistics around that place and the historic volumes delivered to that place. Utility and insurance is other examples of industries where the location golden record (should) matter a lot.

Knowing the properties of a location also supports the party deduplication process. For example, if you have two records with the name “John Smith” on the same address, the probability of that being the same real world entity is dependent on whether that location is a single-family house or a nursing home.

Product Golden Record

Product Information Management (PIM) solutions became popular with the raise of multi-channel where having the same representation of a product in offline and online channels is essential. The self-service approach in online sales also drew the requirements of managing a lot more product attributes than seen before, which again points to a solution of handling the product entity centralized.

In large organizations that have many business units around the world you struggle with having a local view and a global view of products. A given product may be a finished product to one unit but a raw material to another unit. Even a global SAP rollout will usually not clarify this – rather the contrary.

GoldWhile third party reference data helps a lot with handling golden records for party and location, this is lesser the case for product master data. Classification systems and data pools do exist, but will certainly not take you all the way. With product master data we must, in my eyes, rely more on second party master data meaning sharing product master data within the business ecosystems where you are present.

Asset (or Thing) Golden Records

In asset master data management you also have different purposes where having a single view of a real world asset helps a lot. There are namely financial purposes and logistic purposes that have to aligned, but also a lot of others purposes depending on the industry and the type of asset.

With the raise of the Internet of Things (IoT) we will have to manage a lot more assets (or things) than we usually have considered. When a thing (a machine, a vehicle, an appliance) becomes intelligent and now produces big data, master data management and indeed multi-domain master data management becomes imperative.

You will want to know a lot about the product model of the thing in order to make sense of the produced big data. For that, you need the product (model) golden record. You will want to have deep knowledge of the location in time of the thing. You cannot do that without the location golden records. You will want to know the different party roles in time related to the thing. The owner, the operator, the maintainer. If you want to avoid chaos, you need party golden records.

Cloud multi-domain MDM as the foundation for Digital Transformation

Upen-200x300

Upen Varanasi

This guest blog post is an interview by Katie Fabiszak with CEO & Founder Upen Varanasi on the new MDM release from Riversand Technologies.

Riversand is pleased to announce the newest release of our cloud-native suite of Master Data Management solutions. Helping organizations create a data and analytics foundation to drive successful digital transformation was the driving factor behind Riversand’s decision to completely rethink and rebuild a master data platform that would meet the future needs of the digital era. According to Riversand CEO & Founder Upen Varanasi, “We knew we had to make an aggressive move to envision a new kind of data platform that was capable of handling the forces shaping our industry.” Katie Fabiszak, Riversand Global Vice President of Marketing, sat down with Upen to talk about Riversand’s vision of the future and how the bold decisions he had made several years ago led to the company’s own transformational journey and a new MDM solution:

KF:        Where do you think the market is heading?

UV:       Well, we are truly in the digital era. The markets are rewarding companies that are leaders in this digital landscape. This is forcing all companies to truly embrace digital transformation. A key aspect of this transformation is the role of data. Data is the new “fuel” of digital transformation. What matters is how enterprises can leverage data and unlock its power to create better and faster business outcomes. Turning data into insights is a key factor. Another important aspect is to understand the complexities of the information supply chain. Simplifying the flow of data is critical to drive better and faster business outcomes. Let’s take an example from the retail/CPG space: Enterprises want to better understand their customers (utilizing customer insights through AI), create/sell products and services that meet and exceed customer expectations (product positioning through AI), meet their customers across all touch points (channel management), secure their customer’s information (privacy), and interact with trading partners to creating cutting edge product differentiation (cloud and AI).

KF:        Why did Riversand decide to shift gears and embark on what became a 2+ year transformational journey for the company?

UV:       At Riversand, we understood the need to envision a new kind of platform to handle the trends occurring in our industry. We focused on creating a data-driven multi-domain Master Data Management System that has the following properties:

  • A contextual master data modeling environment.
  • A platform that can handle scale, velocity and variety of data, built to handle master data as well as transaction and interaction data.
  • Embedded AI to drive better insights and outcomes.
  • Built on cloud, with the ability to integrate data and processes across hybrid clouds.
  • A highly business-friendly user experience.
  • Apps built on the platform that can solve the “final mile” problem for business users. PIM and customer domain solutions are each apps built on this same platform.

Our goal was to create a platform and solutions that can be quick to implement, provide insights and recommended actions to business users, and automates many of the more mundane data management and stewardship functions. We believe we can provide Enterprises with the critical capabilities from the Master Data Management and Product Information Management space to differentiate themselves in the marketplace.

KF:        What are the core values of Riversand?

UV:       Our core values are innovation, commitment & integrity. We have consistently strived to bring leading edge innovation to the market. We have dared to step back at times in order to take a bigger leap forward. What helps is that we have had a long-term view of our company and the industry we play in. We have been in business for 18 years and have been committed to this space and to our customers all along the way. Integrity in everything we do is key in dealing with our stakeholders – employees, customers and partners – and has been our focus since inception. We might not get things right all the time to begin with, but we will always make it right with our stakeholders over time.

KF:        What do you see as Riversand’s biggest strength?

UV:       Our people, our passion for this space and our long-term thinking give us an incredible edge against our competition. We are blessed to have a team who have shaped this company over many years and who are invested deeply in the company and this market space.

Riversand picKF:        What would you say sets Riversand apart?  How is our technology and approach different than the other MDM and PIM vendors in the market?

UV:       The path we have chosen provides clear benefits for our customers with respect to our competition. Some key points of differentiation are:

  • We provide a single platform to help implement MDM and PIM initiatives. No need to create further silos of data and processes.
  • We future-proof both business users and IT users with a platform that is flexible and future enabled.
  • We are built for the cloud and SaaS eras: Upgrades are easy and done by us, and customers can scale with pay as you go models.
  • Our AI engine is built on a big data stack to drive insights and actions for better business outcomes.
  • With our big data technology stack, enterprises have the ability to scale with data and handle both its variety and velocity.
  • A completely new and extremely business friendly user interface and experience that people love to use!
  • The app building toolkit (SDK) to help customers and partners build their own apps so that they can solve their final mile problems: This is in addition to the core apps we are actively building.

KF:        Where is Riversand today along this journey that we began over 2 years ago?

UV:       Our new solutions were introduced as a kind of soft launch with a select few customers over the past year. The feedback and insights we received during this year were extremely useful in becoming enterprise-ready. We are now in a position to launch our platform to the broader market. Over the next two quarters, we will be further enhancing our offerings including: the analytics/AI platform, app SDK for partners and customers, launching additional SaaS appsnd entering additional vertical markets. We also look forward to creating robust partner ecosystems for these vertical markets.

KF:        What’s next for Riversand – what do you envision for the future?

UV:       We are really excited about the potential of our new master data platform and we look forward to working with our current customers as well as new customers to help them with their digital transformation journey. We are disruptors in our space and we will continue to establish ourselves as a larger, bolder and leading global brand.

We hope you enjoyed the interview!  You can check out additional information by reading the press announcement here.

Katie Fabiszak oversees and directs global marketing efforts at Riversand.  She is an accomplished executive with more than 20 years of success in global marketing for high tech companies. She is responsible for leading the strategic evolution of the company’s branding and marketing strategy.  With proven success developing effective marketing strategies to drive revenue, Katie’s extensive career includes marketing leadership positions at Informatica, StrikeIron and DataFlux (a SAS company).

Master Data Management Definitions: The A-Z of MDM. Part 2

This guest blog post is written by Justine Aa. Rodian of Stibo Systems. The post is part 2 in a series of 3. Please find part 1 here.

img_A-Z_post2E

Enterprise Asset Management (EAM). The management of the assets of an organization (e.g., equipment and facilities).

Enterprise Resource Planning (ERP). Refers to enterprise systems and software used to manage day-to-day business activities, such as accounting, procurement, project management, inventory, sales, etc. Many businesses have several ERP systems, each managing data about products, locations or assets, for example. A comprehensive MDM solution complements an ERP by ensuring that the data from each of the data domains used by the ERP is accurate, up-to-date and synchronized across the multiple ERP instances.

Enrichment. Data enrichment refers to processes used to enhance, refine or otherwise improve raw data. In the world of MDM, enriching your master data can happen by including third-party data to get a more complete view, for example, such as adding social data to your customer master data. MDM eliminates manual product enrichment processes and replaces them with custom workflows, business rules and automation.

Entity. A classification of objects of interest to the enterprise (e.g., people, places, things, concepts and events).

ETL. Extract, Transform and Load. A process in data warehousing, responsible for pulling data out of source systems and placing it into a data warehouse.

G

Golden Record. In the MDM world, also sometimes referred to as “the single version of the truth.” This is the state you want your master data to be in and what every MDM solution is working toward creating: the most pure, complete, trustable data record possible.

Governance. Data Governance is a collection of practices and processes aiming to create and maintain a healthy organizational data framework, by establishing processes that ensure that data is formally managed throughout the enterprise. It can include creating policies and processes around version control, approvals, etc., to maintain the accuracy and accountability of the organizational information. Data governance is as such not a technical discipline but an indispensable discipline of a modern organization—and a fundamental supplement to any data management initiative.

GS1. Global Standards One. The GS1 standards are unique identification codes used by more than one million companies worldwide. The standards aim to create a common foundation for businesses when identifying and sharing vital information about products, locations, assets and more. The most recognizable GS1 standards are the barcode and the radio-frequency identification (RFID) tags. An MDM solution will support and integrate the GS1 standards across industries.

H

Hierarchy Management. An essential aspect of MDM that allows users to productively manage complex hierarchies spread over one or more domains and change them into a formal structure that can be used throughout the enterprise. Products, customers and organizational structures are all examples of domains where a hierarchy structure can be beneficial (e.g., in defining the hierarchical structure of a household in relation to a customer data record).

Hub. A data hub or an enterprise data hub (EDH) is a database that is populated with data from one or more sources and from which data is taken to one or more destinations. An MDM system is an example of a data hub, and therefore sometimes goes under the name Master Data Management hub.

I

Identity resolution. A data management process where an individual is identified from disparate data sets and databases to resolve their identity. This process relates to Customer Master Data Management.

Information. Information is the output of data that has been analyzed and/or processed in any manner.

Learn more about the difference between data and information here.

Integration. One of the biggest advantages of an MDM solution is its ability to integrate with various systems and link all of the data held in each of them to each other. A system integrator will often be brought on board to provide the implementation services.

Internet of Things (IoT). Internet of Things is the network of physical devices embedded with connectivity technology that enables these “things” to connect and exchange data. IoT technology represents a huge opportunity—and challenge—for organizations across industries as they can access new levels of data. A Master Data Management solution supports IoT initiatives by, for example, linking trusted master data to IoT-generated data as well as supporting a data governance framework for IoT data.

Learn more about the link between IoT and MDM here.

L

Lake. A data lake is a place to store your data, usually in its raw form without changing it. The idea of the data lake is to provide a place for the unaltered data in its native format until it’s needed. Why? Certain business disciplines such as advanced analytics depend on detailed source data. A data lake is the opposite of a data warehouse, but often the data lake will be an addition to a data warehouse.

Location data. Data about locations. Solutions that add location data management to the mix, such as Location Master Data Management, are on the rise. Effectively linking location data to other master data such as product data, supplier data, asset data or customer data can give you a more complete picture and enhance processes and customer experiences.

M

Maintenance. In order for any data management investment to continue delivering value, you need to maintain every aspect of a data record, including hierarchy, structure, validations, approvals and versioning, as well as master data attributes, descriptions, documentation and other related data components. Master data maintenance is often enabled by automated workflows, such as pushing out notifications to data stewards when there’s a need for a manual action. Maintenance is an unavoidable and ongoing process of any MDM implementation.

Modelling. Modelling in Master Data Management is a process in the beginning of an MDM implementation where you accurately map and define the relationship between the core enterprise entities (e.g., your products and their attributes). Based on that you create the optimal master data model that best fits your organizational setup.

Matching (and linking and merging). Key functionalities in a Customer Master Data Management solution with the purpose of identifying and handling duplicates to achieve a Golden Record. The matching algorithm constantly analyzes or matches the source records to determine which represent the same individual or organization. While the linking functionality persists all the source records and link them to the Golden Record, the merging functionality selects a survivor and non-survivor. The Golden Record is based only on the survivor. The non-survivor is deleted from the system.

Multidomain. A multidomain Master Data Management solution masters the data of several enterprise domains, such as product and supplier domain, or customer and product domain or any combination handling more than one domain.

Metadata management. The management of data about data. Metadata Management helps an organization understand the what, where, why, when and how of its data: where is it coming from and what meaning does it have? Key functionalities of Metadata Management solutions are metadata capture and storage, metadata integration and publication as well as metadata management and governance. While Metadata Management and Master Data Management systems intersect, they provide two different frameworks for solving data problems such as data quality and data governance.

N

New Product Development (NPD). A discipline in Product Lifecycle Management (PLM) that aims to support the management of introducing a new product line or assortment, from idea to launch, including its ideation, research, creation, testing, updating and marketing.

O

Omnichannel. A term mostly used in retail to describe the creation of integrated, seamless customer experiences across all customer touchpoints. If you offer an omnichannel customer experience, your customers will meet the same service, offers, product information and more, no matter where they interact with your brand (e.g., in-store, on social media, via email, customer service, etc.). The term stems from the Latin word omni, meaning everything or everywhere, and it has surpassed similar terms such as multi-channel and cross-channel that do not necessarily comprise all channels.

If you’d like the whole A-Z e-book in a downloadable format, please find it here.

Justine Aagaard Rodian is a marketing specialist at Stibo Systems with a background as a journalist. Five years in the data management industry has armed Justine with unique insights and she is now using her storytelling and digital skills to spread valuable business knowledge about Master Data Management and related topics.